Finite groups with all minimal subgroups solitary
نویسندگان
چکیده
منابع مشابه
finite groups whose minimal subgroups are weakly h*-subgroups
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
متن کاملpartially $s$-embedded minimal subgroups of finite groups
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
متن کاملpartially s-embedded minimal subgroups of finite groups
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
متن کاملFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS
Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2016
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498816501401